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Radiation Modes of Open
Microstrip with Applications

Tullio Rozzi, Fellow Member, IEEE, and Graziano Cerri

Abstract-The well known bound modes of open microstrip
do not constitute a complete spectrum, for, continuous radiation
and loc~lzed (reactive) modes are excited at discontinuities in
microstrip circuits and antennas. This part of the spectrum
has not been investigated before so that, up to date, radiation
problems in microstrip are being investigated by nonmodal meth-
ods, such as the moment method. We derive here for the first
time the complete spectrum of open microstrip, including one
or more bound modes and a continuum, and demonstrate its
straightforward application to a practical problem such as the
excitation by a cylindrical probe of finite radius. Application
of Lorentz’s reciprocity principle is now possible in complete
analogy to the problem of excitation of a close waveguide by
a probe. Mode patterns, the equivalent circuit of a via-hole and
its radiation pattern are characterized as a practical application
of the foregoing theory.

I. INTRODUCTION

uNLIKE closed waveguides that comprise an infinite,
numerable spectrum of discrete modes, open waveguides

comprise, possibly, a few discrete modes and a continuous
spectrum besides.

If the cross section of the guide is one-dimensional or
two-dimensional and separable, the complete spectrum can
be found according to classical procedures [1], [2]. If instead
the guide cross-section is two-dimensional and nonseparable,
either closed or open, application of transverse resonance in
the spectral [3] or in the space domain [4], or in the equivalent
network form [5], [6] can always, in principle, yield its discrete

spectrum.
Much less attention seems to have been paid so far to the

more difficult question of the continuum of a nonseparable
open cross-section [7], [8] such as that of open microstrip.

The nonavailability of this part of the spectrum has conse-
quences in the study of discontinuity and radiation problems
in open microstrip in as much as it prevents the adoption of
modal techniques typical of closed waveguide.

For istance, the Spectral Domain Integral Equation (SDIE)
approach does retain the open nature of the structure and
has been applied to many practical components, [9]–[13]. Its
effectiveness for many problems, however, is constrained by
the necessity to model the fields over large interaction regions.
This is a significant limitation, so that the fields at some
distance before and after the discontinuity are often consid-
ered to consist solely of incident, reflected and transmitted
fundamental modes. This assumption is valid for fairly well
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spaced planar circuits, however substrate modes and radiation
fields only decay as the square root of the distance and,
if significantly excited by the discontinuity, will invalidate
this assumption. Moreover, it is cumbersome to extend these
techniques to non planar discontinuities, e.g. via hole, probes
[14].

By contrast, the excitation of modes by a probe in a
close guide provides a classical example of the application of
Lorentz’ theorem [15]. By analogy, if the complete spectrum

of open microstrip were available in usable form, the above
class of problems would be amenable to a very efficient
solution. It is, therefore, evident that a viable procedure for
obtaining the continuous spectrum of open microstrip, now
lacking, would be advantageous for the study of a wide class
of problems, arising from either discontinuities in the line or
when the latter is being operated as an antenna element.

It is the purpose of the present contribution to develop, in

full hybrid form, the complete spectrum of open microstrip.
Once this is developed, we demonstrate its application to the
practical, nontrivial problem of excitation of microstrip by
means of a probe of finite dimensions connecting ground plane
and strip conductor (via-hole). Owing to the symmetry of the
geometry, it is possible to derive in quasianalytical form the
modal amplitude of each component of the complete spectrum
of the line excited by the probe by application of Lorentz’
theorem in a manner completely analogous to that used in
determining the amplitude of each discrete mode in close
waveguide.

II. ANALYSIS, COMPLETE SPECTRUM

Considering the microstrip cross-section of Fig. 1, we ob-
serve that this differs in two ways from the problem of a
grounded clielectric slab guide

1) the fields are hybrid;

2) the geometry is essentially nonseparable due to the strip
edges at z = +a/2.

As a consequence of 2), it is evident that any field in

the cross-section has to be expanded as a Fourier integral

in km, (lc~ + kv2 = lc~), where two different Fourier compo-

nents are coupled by diffraction at the strip edges (transverse

diffraction).

The response of the guide to a source involves excitation of

the discrete (bound) modes of the microstrip as well as of a

continuum of modes, analogous in concept to those of the slab

guide, but more complex in form because of the hybrid nature

of the field and of the effect of transverse diffraction, that is /tz -

mixing due to the effect of the strip, Such continuous modes
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Fig. 1. Geometg of the microstrip line: cross section.

can be seen as wave packets in k., each packet corresponding
to a fixed value of kt which individually satisfy boundary and
edge conditions on the strip, radiation at infinity, continuity of
the transverse fields at the interfaces between dielectrics.

For a given kt, there is still the possibility of degeneracy,

that is the existence of a number of different strip currents

and field configurations satisfying all boundary and edge
conditions, pertaining to the same value of ,&, which are
labeled by the discrete index p.

Wave packets corresponding to different values of kt and
of the discrete index u are mutually orthogonal over the
cross-section, as defined below

/
Ep(kt)xHv(k:) . Z dS = 6wvr$(kt– k{) (1)

s
where

k~=k~–/32 being O<kt <co.

In order for all kz-components of a wave packet to travel
down the guide with the same phase constant ~, the phase

shift a must be the same for all, i.e. a characteristic function
of the packet a. (kt).

For each wave packet, labeled by kt, v, the y-directed LSM
and LSE hertzian potentials in air and substrate regions, can
be expressed as Fourier integrals in k= with separate x and y
dependence; for instance, for the even parity LSM potential

in air we have

/“!PV(x, y, h) = +&~ fv(ka, kt)@(k%,X)x’(y, kz, kt) dk~

(2)

where

@(k., x) =
{

: Cos(kzx) (3)

Analogous expressions hold for the substrate and for the
LSE potential. We note the presence of a phase shift av (kt)
as yet undetermined in the y-dependence that can be seen

physically as the phase delay of a wave in the y-direction im-

pinging on the microstrip from the upper half plane. All fields,

in fact, are evaluated from (2), once aV (kt ) is determined. The

purpose of the analysis is to setup an eigenvalue equation for

aV; the eigenvector corresponding to the eigenvalue CYV(kt)
is a current distribution Jv = (JUZ, Jv. ) on the microstrip
consistent with the potential (2).

By imposing the continuity of the tangential electric fields
at the air-dielectric interface and the discontinuity of the
transverse magnetic field on the strip given by

yx(H$– Hj)=JV (6)

where H:, HZ are magnetic fields at y = O in air and

in the substrate respectively, it is possible to evaluate the

spectral amplitudes ~. (k., kt ), ~V(Ic Z,/ct) which appear in the
expressions of the potentials as combinations, via ,6 and kz,
of the $’-transforms of the currents on the strip; these are
omitted for sake of brevity.

The condition of vanishing tangential electric field on the
conductor

EVOJV=O (7)

yields then the sought eigenvalue equation for au(kt).
Although the algebra of the theoretical development is

complicated by the hybrid nature of the field, the practical

evaluation of the spectrum au for values sampled in the range
O < /ct < cc can be quickly achieved using a Ritz-Galerkin
technique and assuming JV as a test current distribution.

In particular, the following expansions for the currents on
the strip are used:

n=l

n=]

where

(8a)

(8b)

(9a)

‘z(x)=J*

(9b)

are the appropriate weight functions in order to take into
account the behavior of the currents on the edge of the strip,
1.. and lZ. are the unknown amplitudes of each component,

~~~(~), ~~~(x) the Chebyshev polynomials. In terms of (8)
above, it is possible to reduce (7) to the following matrix
equation:

(lo)

where the Z-blocks are real matrices of the type

z = P(a.) + Q (11)

the term P(aV) is obtained by integration in the spectral
domain over the propagating part of the spectrum (~ < ko)
while Q, independent of aV, is relative to the non propagating
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components of the spectrum; the expressions of the matrix
elements are detailed in the Appendix.

The condition of vanishing determinant of the matrix [Z]
allows the evaluation of au.

Owing to symmetry (Zzz = Z.z), it is possible to recover
the following condition of orthogonality between eigenvectors

corresponding to different eigenvalues

[L/]t[~][~p] = o (12)

where the matrix R.P = R(av, QP) is defined by

(cotga. - cotgaY)R(av, ap) = P(az/) - P(ap). (13)

For a given value of kt, (12) is a statement of the orthogo-
nality between modes corresponding to different values of the
discrete index in (l), implying that two such modes do not
exchange power on the strip. An interpolating curve for a. in
the proper range of kt is sufficient for the accurate description

of the field.

III. MICROSTRIP DISCONTINUITY

The complete spectrum derived in the previous section
allows us to recast radiation and discontinuity problems in mi-
crostrip on the same formal basis as problems involving mode
excitation in classical waveguide where Lorentz’ theorem can
be applied.

As an application of the foregoing theory, we will consider
the problem of a coaxial feed or the germane one of a via-hole
in microstrip and demonstrate how knowledge of the complete
spectrum allows us to retrace the conceptual steps of the closed
waveguide case [15, Sections 5–6], leading now to a simple
analytical formula for the far field and a variational expression
of the shunt impedance modeling the post.

A. Mode Excitation

The configuration under study is shown in Fig. 2 and

consists of a symmetrically placed conducting post connecting

ground plane and strip conductor; it is assumed the via to
be represented by an equivalent flat post having the same

perimeter, and the current J on the surface of the post to
be uniform and y-directed

J = Joy (A/m). (14)

Application of Lorentz’ reciprocity principle yields the
amplitudes of the forward, C;, C+ (kt), and backward,
C’;, C– (kt), waves of the fundamental mode and of each
wave packet of the continuous spectrum

–2C+(kt) =
J

E-(k,) . J dS (15a)
Probe Surface

–2C-(kt) =
J

E+(kt) . J (LS’. (15b)
Probe Surface

E* (kt ) represents the total forward/backward traveling
continuous E-field and can be easily obtained by (2); in this
particular case only the Ev component of the substrate field
is involved, giving

C+(k,) = C-(k,) = –(J, e(kt))

/

1 ‘-.
2~

E;(km, kt)X(kZ, kt)dkx. (16)

Fig. 2. Conducting post connecting ground plane and strip conductor: ge-
ometry.

E; (kZ, kt) is a Fourier component of the modal distributions

and X (kz, kt) is the coupling coefficient, given by

sin (*) tan qh
X(kZ, kt) = ~wh ~ ~ — (17)

L
2

qh “

The same formal expressions (15), (16) hold for the coeffi-
cients of the fundamental mode not reported here for brevity:
it is enough to replace the field expressions of the continuum
by those relative to the fundamental mode.

B. Variational Formulation for the Post Impedance

Retracing the conceptual steps of the closed waveguide case,
[15], the total field in the guide is the sum of an incident and

scattered field and must vanish on the perfecly conducting
strip.

The resu king integral equation for the current is

/
(1+ R)eO = m dkt(J, eke (18)

o

where R is the reflection coefficient of the fundamental mode

and J is the unknown current distribution on the post.
An expression for the shunt impedance Z modeling the post

in the line can then be obtained by expressing R in terms of
Z, yielding

(19)

20 being the characteristic impedance of the line.

C. Radiated Field

Knowledge of the current on the post, upon application of

the stationary phase method, allows us to recover the far field

of the via h presence of the microstrip line. This is

~–~~or

E. = –j~koC(kt)e-~”u fk’JFc(kZ) sin d cos @—
‘r

(20a)
e–~kor

Ev = j~koC(kt)e-~@u(~’JFY(kZ) sin~cos6J—

r (20b)
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Fig. 3. First eigenvalue a (degree) as a function of the transverse wavenum-
ber.

where

kt = k~ sin(~), k. = k~ sin~cosg$.

C(kt) is the wave packet amplitude as given by (16) and

functions F are linear combinations of the amplitudes of the

potentials. Far field components cart be evaluated by changing

to polar coordinates

[1[E@
EZ

1[ ]

_ cos19cosq5 cosi3sin@ –sin O E
E4 – –sin+

(21)
Cos ~ OEY”

z

It is noted that the dependence on elevation (0), azimuthal
angle (~), and distance (r) are separated in the above formula.
Consequently, the far field is seen to be a product of the
microstrip mode pattern F (O,#) and of that of the probe

pattern.

IV. RESULTS

A. Field Characterization

A numerical program has been developed to solve (10) and
a microstrip line with the following characteristics has been
analyzed: strip width a = 2.8 mm, substrate thickness h = 1.5
mm, substrate relative permittivity 5, = 4.5, negligible strip
thickness, which give a strip characteristic impedance 20 =

50 Q.
In Fig. 3 the eigenvalue a as a function of the transverse

wavenumber is shown. It is noted the presence of a discon-
tinuous derivative at kt = kO arising from the wave number
(l).

We derived the modal field distribution for kt/ko = 0.6:
Fig. 4 shows the amplitude of the Ev electric field component
close to the strip, for 120 = 1 A/m: it is easily verified that this

component satisfies its boundary conditions at the air-dielectric
interface and at the strip edges. The same holds true for the
remaining components not reported here.

Another and more severe check has been performed on a

derived quantity such as the charge density on the strip: the
surface charge density can be easily evaluated from (8) as well
as from the discontinuity of the 12v field component at y = O.

400

1%1

200

0

Y

, y=(y

— y=h/2

._, —.-. —*— “

x

/

-h

Fig. 4. Modulus of the I?u field component close to the strip.

At the centre of the strip, tie two results differ by about 9.5

percent; the agreement is good, also considering that

1) the testis relative to the Ev field component about which
no condition has been enforced;

2) just one expansion function for each current has been
used.

Finally, Fig. 5 shows the distributions of the amplitudes of
the transverse electric field over the cross-section of the radi-
ation mode: it is evident the different nature of the radiation
mode with respect to that of the bound mode.

Whereas the latter is seen to correspond to a quasistatic field

pattern, the former distribution shows clearly the transverse

standing wave character of the continuous mode. Even in this
case all boundary and edge conditions are satisfied, however
the field amplitude behaves in the proper fashion of a radiation
field in both transverse directions.

B. Application to a Via-Hole Ground

The analysis developed in Section III has been applied to
simulate a via-hole on GaAs produced and measured by GEC
Marconi and represented in Fig. 6: it is assumed that the flat

post equivalent to the actual cone shaped via has the same
perimeter at its mid height section. Although from a rigorous
viewpoint the quantities appearing in (19) need to be computed
for each frequency, nonetheless, for practical purposes, it is
sufficient to evaluate the L, R elements at midband and then
these values can be used also at different frequencies with a
modest error.

A prediction of the transmission coefficient derived by

means of the present variational formulation is compared in
Fig. 7 with measurements and with results obtained by a 3-D
mode matching technique [16].

It is also noted that, while the mode-matching simulation
of [16] has been developed for a boxed structure, the present
one has been developed for an open microstrip. As a con-
sequence, the formulation of [16] naturally takes into account
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Fig. 5. Near fieldpattem overthe cross-section oftieradlation mode(~ =
0.6).

Via Hole Ground : Side View

Fig.6. Scheme of thernicrostrip viahole ground on GaAs (&. = 12.9). The
tnicrostrip width is a = 570 #m.

package interactions, while the rigorous equivalent circuit here
introduced directly accounts for radiative losses.

The results of our equivalent circuit is also compared in
the same figure with theoretical data computed by a com-
mercial software package [17]. A more detailed discussion
of the equivalent radiation resistance, reported in Fig. 8, and
inductance of thepost canbe foundin [18], [19].

Finally recomputed the farfield excited by the finite post,
as given by (21), with amplitudes derived as described in

-40 ;

o 0 oHptdDS3.t)

~measured

––-full wave mode-matching

~variational equivalent circuit

/
/

-50 ~

0246 8 10 12 14 16
frequency (GHz)

Fig. 7. Comparison of measured data with our equivalent circuit for a via
hole on GaAs. Also shown are full wave results relative to the boxed case
[16] and to a commercial model of the via.

0,2
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0,1-

0.C)5 -

20 25 30 35 40

Frequency (GHz)
Fig.8. Radiation resistance oftiepost asafunction of frequency.

Section III; calculations for the longitudinal plane are plotted
in Fig. 9. Tlis symmetrical radiation pattern is characterized
bythe presence of twomain lobesat O R 10°, 75°.

On the plane mzthe radiationis also concentrated around
the forward direction, as in a leaky wave antenna. We ex-
pect therefm-e considerable interaction due to this mode with

neighboring circuit elements in line with the strip, whereas
radiation from a probe without the strip would be essentially
omnidirectional.

Thecompttterprogram runsona~VAX3600; mostofCPU
time (about 3 hours) is required to generate the eigenvalue
curve cz(kt): this is due to the fact that the integral (19) for
the evalttationof the impedance converges for ahigh valueof
the upper lirnito fintegration (kt N 80 – 100 ko). Once this
data is filed, the calculation of the equivalent circuit requires
a few seconds per frequency point.

V. CONCLUSION

For the first time, wehavedefived the complete spectrum

of open microstrip. This knowledge allows one to solve
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microstrip discontinuities and radiation problems in a manner
conceptually analogous to that of determining modal excitation
by a source in a classical waveguide.

A nontrivial application is given to the case of a probe of
finite thickness connecting strip and ground plane, i.e. either

a coaxial excitation of microstrip or a short circuit realized
by a post. Numerical results are presented for the equivalent

circuit of’ the post and compared with experiment and other

existing data showing moreover how far the presence of the
strip influences the radiation pattern of the probe.

AppENDIx

After obtaining the electric fields from potentials (2), and
using the expansion (8) for the currents, the condition (7) leads
to the following expressions of the Z blocks of (10), according
to the notation of (11)

i=l,2; j=l,2 (Al)

mn _

J
Q“ dkz (’tfJz., fz.n , @p.)%.z3 (wz, , fcjrn ~@~,)x%x] —

k,

~=l,z;j=l,z (AZ)

where

xl=x, xz=z, pl=h, pz =e;

A = ~kz(kv tan a. – qtanqh) = A
X2

DTEDTM
Zz (A5)

/31cZ(y - q tan qh) = a
aZZ =

dTEdTM ‘z
(A6)

A = kg tana.(erk~ – /32) – qtanqh(k~ – ~2) ~A71
Zz

DTEDTM

Uzz = T(s.k; – f12) – qtanqh(k~ – ,L?2)

dTEdTM
(A8)

Functions DTE,DTM,dTE, dTM are given below

DTE = –kgcd ~v(kt)+ qcd Qh (A9)

DTM = Erky tanav(kt) – qtanqh (A 10)

dTE=”/+qcOtqh (All)

dTM = &.T – q tan qh. (A12)
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